Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 34(4): 454-466, Dec. 2012. ilus
Article in English | LILACS | ID: lil-662752

ABSTRACT

OBJECTIVE: Mounting evidence suggests that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological and connectivity changes might contribute to the development of psychosis and to the potential neurobiological mechanisms that cause schizophrenia-like psychosis in TLE patients. METHODS: In this review, clinical and neuropathological findings, especially brain circuitry of the limbic system, were examined together to enhance our understanding of the association between TLE and psychosis. Finally, the importance of animal models in epilepsy and psychiatric disorders was discussed. CONCLUSIONS: TLE and psychiatric symptoms coexist more frequently than chance would predict. Damage and deregulation among critical anatomical regions, such as the hippocampus, amygdala, thalamus, and the temporal, frontal and cingulate cortices, might predispose TLE brains to psychosis. Studies of the effects of kindling and injection of neuroactive substances on behavior and electrophysiological patterns may offer a model of how limbic seizures in humans increase the vulnerability of TLE patients to psychiatric symptoms.


OBJETIVO: Existem cada vez mais evidências de que o sistema límbico está envolvido na patologia das comorbidades psiquiátricas em pacientes com epilepsia do lobo temporal (ELT). Nosso objetivo foi elaborar um desenho conceitual descrevendo como aspectos neuropatológicos e de conectividade podem contribuir para o desenvolvimento de psicose em pacientes com ELT. MÉTODOS: Nesta revisão, achados clínicos e neuropatológicos, e especialmente os aspectos da circuitaria límbica, foram examinados em conjunto para auxiliar nossa compreensão sobre a associação entre ELT e psicose. Achados em modelos animais de epilepsia e esquizofrenia também foram levados em consideração. CONCLUSÕES: ELT e comorbidades psiquiátricas coexistem com maior frequência que o predito pela associação ao acaso. Dano e desregulação entre estruturas anatômicas críticas, como hipocampo, amígdala, tálamo, e córtices temporal, frontal e cingulado podem predispor o cérebro com ELT à psicose. Estudos sobre efeitos comportamentais e eletrofisiológicos do abrasamento elétrico e injeções de substâncias neuroativas em modelos animais podem oferecer pistas sobre como crises límbicas em humanos aumentam a vulnerabilidade de pacientes com ELT a sintomas psiquiátricos.


Subject(s)
Animals , Humans , Epilepsy, Temporal Lobe , Limbic System , Psychotic Disorders , Amygdala/pathology , Amygdala/physiopathology , Comorbidity , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/psychology , Hippocampus/pathology , Hippocampus/physiopathology , Limbic System/pathology , Limbic System/physiopathology , Models, Animal , Psychotic Disorders/pathology , Psychotic Disorders/psychology , Risk Factors , Thalamus/pathology , Thalamus/physiopathology
2.
J. epilepsy clin. neurophysiol ; 16(4): 149-154, 2010. ilus
Article in Portuguese | LILACS | ID: lil-578770

ABSTRACT

INTRODUÇÃO: No sistema nervoso central a comunicação entre neurônios se realiza através de estruturas denominadas sinapses: elétricas ou químicas. As sinapses elétricas são formadas pela aproximação das membranas plasmáticas de dois neurônios formando estruturas chamadas junções comunicantes (gap junctions, do inglês). As junções comunicantes são compostas por seis subunidades da proteína conexina de cada membrana, formando poros que comunicam o citoplasma de células adjacentes e permitem a passagem de íons e pequenas moléculas. OBJETIVOS: A presente revisão pretende descrever e discutir os principais resultados que apontam para uma importante relação entre junções comunicantes e sincronia neuronal durante crises epilépticas. RESULTADOS E CONCLUSÃO: Quando um neurônio é despolarizado, este tipo de comunicação permite a rápida transferência iônica entre as células, promovendo alta sincronia neuronal. Recentemente, o papel das junções comunicantes na geração e propagação de descargas epilépticas tem sido estudado através do uso de diferentes modelos experimentais in vivo, in vitro e in silico (modelos computacionais).


INTRODUCTION: In the central nervous system, neuronal communication is accomplished by structures called synapses: electrical or chemical. Electrical synapses are formed by the apposition of plasmatic membranes at gap junctions and the interaction of connexin subunits from two neurons. At this site, connexin complexes create intercellular pores that communicate the cytoplasm of adjacent neurons and allow free flow of ions and small molecules. OBJECTIVE: In this review, we will present and discuss recent results showing the possible involvement of electrical synapses in the neuronal hypersynchronization during epileptic seizures. RESULTS AND CONCLUSION: When a neuron is depolarized, ions flow very rapidly from one cell to the other promoting high neuronal synchrony. More recently, the role of gap junctions in the generation and propagation of epileptic discharges has been investigated using combined approaches of in vivo, in vitro and in silico (computational) models.


Subject(s)
Humans , Seizures , Gap Junctions , Connexins , Electrical Synapses
3.
J. epilepsy clin. neurophysiol ; 15(1): 30-36, mar. 2009. ilus
Article in English | LILACS | ID: lil-523217

ABSTRACT

INTRODUCTION: The neural regulation of the microcirculation is done by the functional neurovascular unit that is composed of vascular, astroglial and neuronal cells. The neurovascular unit represents the interface between the Central Nervous System and the Vascular System. OBJECTIVE: This paper reviews the literature on functional neuroimaging with a particular focus on the mechanisms of the neurovascular coupling. CONCLUSIONS: Functional neuroimaging techniques as functional MRI, SPECT and PET distinguish metabolic and physiological processes underlying normal and abnormal events, based on neurovascular coupling. Although these techniques still have limitations in temporal and spatial resolution, they have considerably reduced the need for intracranial electrodes or invasive functional tests in the presurgical evaluation for intractable epilepsy. Recently, new techniques as optical approaches (measurement of intrinsic optical signals and near infrared spectroscopy) have increased both temporal and spatial resolutions. The use of such techniques in animal models has yielded experimental evidence for a neurovascular coupling in normal and epileptic conditions.


INTRODUÇÃO: A regulação da microcirculação cerebral é realizada pela unidade neurovascular, que é composta por vasos sangüíneos, células astrogliais e neuronais. A unidade neurovascular representa a interface funcional entre o Sistema Nervoso Central e o sistema vascular. OBJETIVO: Este trabalho revisa a literatura sobre técnicas de neuroimagem funcional com especial enfoque nos mecanismos do acoplamento neurovascular. CONCLUSÃO: Técnicas de neuroimagem como a Ressonância Magnética funcional, SPECT e PET baseiam-se no acoplamento neurovascular para explorarem os processos metabólicos e fisiológicos subjacentes a eventos cerebrais normais e anormais. Embora estas técnicas apresentem limitações de resolução temporal e espacial, sua aplicabilidade em epilepsia tem reduzido consideravelmente a necessidade de eletrodos intracranianos e de outros métodos funcionais invasivos na avaliação pré-cirúrgica de pacientes com epilepsia intratável. Recentemente, novos procedimentos ópticos (mensuração do sinal intrínseco óptico e espectroscopia por raio infravermelho) que possuem excelente resolução espacial e temporal têm fornecido evidências experimentais do acoplamento neurovascular no cérebro normal e epiléptico.


Subject(s)
Humans , Magnetic Resonance Imaging , Tomography, Emission-Computed, Single-Photon , Epilepsy , Functional Neuroimaging
4.
Rev. Assoc. Med. Bras. (1992) ; 54(5): 461-466, set.-out. 2008. tab
Article in Portuguese | LILACS | ID: lil-495909

ABSTRACT

Nesta revisão, introduzimos abordagens investigativas, assim como discutimos os principais achados de expressão gênica diferencial em tecido epiléptico humano e em modelos experimentais. As alterações observadas no cérebro de indivíduos epilépticos sugerem que eventos moleculares específicos refletem diferentes expressões do quadro fisiopatológico. É possível que diferentes combinações da expressão de genes associados à morte celular, metabolismo de radicais livres, transmissão sináptica, resposta imune e de neurotrofinas reflitam propriedades características de diferentes populações neuronais e gliais, que determinam as distintas respostas de cada área cerebral. A compreensão dessas particularidades moleculares será muito importante para o desenvolvimento de uma estratégia de intervenção visando reduzir neurotoxicidade e disfunções sinápticas que ocorrem durante a epileptogênese e a fase crônica em pacientes epilépticos.


We introduce some investigative appnacher and findings on differential gene expression in human epileptic time as well as in animal models of epilepsy. Molecular alterations observed in the epileptic brain suggest that they may disclose different psychopathological stages. It is possible that different gene expression combinations involved in cell death, reactive oxygen metabolism, synaptic transmission and immune response and of neurotrophins reflect distinct functional properties of different neuronal and glial populations, which determine specific brain region responses. Understanding the molecular patterns of gene expression following epileptogenic insults will be of great importance for the development of treatments aiming to reduce neurotoxicity and subtle synaptic dyfunctions present in the early stages as well as during the chronic phase of epilepsy.


Subject(s)
Animals , Humans , Rats , Brain Chemistry/genetics , Epilepsy/genetics , Gene Expression/genetics , Disease Models, Animal
5.
Rev. Assoc. Med. Bras. (1992) ; 54(3): 272-278, maio-jun. 2008. tab
Article in Portuguese | LILACS | ID: lil-485613

ABSTRACT

INTRODUÇÃO: Epilepsia é uma desordem neurológica caracterizada por crises espontâneas e recorrentes, que afeta de 2 por cento a 3 por cento da população mundial. As crises epilépticas refletem atividade elétrica anormal e paroxística, preferencialmente em uma ou várias áreas do córtex cerebral, que podem ser causadas por inúmeras patologias estruturais ou neuroquímicas. Dentre os importantes estudos das últimas décadas no campo da epileptologia, destaca-se a identificação de genes associados a certos tipos de epilepsia. OBJETIVO: Nesta revisão, descrevemos as principais alterações genéticas associadas ao processo epileptogênico, discutindo as mais recentes descobertas e suas contribuições para a compreensão das bases genéticas das epilepsias idiopáticas monogênicas (EIM) e das epilepsias geneticamente complexas. RESULTADOS E CONCLUSÃO: Estudos de ligação e associação mostram que alterações em genes que codificam canais iônicos são as principais causas genéticas das epilepsias idiopáticas monogênicas e de predisposição nas epilepsias geneticamente complexas. Além disso, as síndromes nas quais a epilepsia é um aspecto importante do quadro clínico podem ser provocadas por genes envolvidos em diferentes vias celulares, tais como: migração neuronal, metabolismo de glicogênio e cadeia respiratória. Portanto, acredita-se que diferentes categorias de genes possam atuar na determinação do traço epiléptico. A identificação de tais famílias de genes não apenas nos ajudará a entender as vias moleculares associadas à hiperexcitabilidade neuronal e ao processo epileptogênico, mas também poderá conduzir ao desenvolvimento de novas e mais precisas estratégias de tratamento da epilepsia.


INTRODUCTION: Epilepsy is a neurological disorder characterized by spontaneous and recurrent seizures with an estimated prevalence of 2-3 percent in the world population. Epileptic seizures are the result of paroxystic and hypersynchronous electrical activity, preferentially in cortical areas, caused by panoply of structural and neurochemical dysfunctions. Recent advances in the field have focused on the molecular mechanisms involved in the epileptogenic process. OBJECTIVES: In the present review, we describe the main genetic alterations associated to the process of epileptogenesis and discuss the new findings that are shedding light on the molecular substrates of monogenic idiopathic epilepsies (MIE) and on genetically complex epilepsies (GCE). RESULTS AND CONCLUSION: Linkage and association studies have shown that mutations in ion channel genes are the main causes of MIE and of predisposition for GCE. Moreover, mutations in genes involved in neuronal migration, glycogen metabolism and respiratory chain are associated to other syndromes involving seizures. Therefore, different gene classes contribute to the epileptic trait. The identification of epilepsy-related gene families can help us understand the molecular mechanisms of neuronal hyperexcitability and recognize markers of early diagnosis as well as new treatments for these epilepsies.


Subject(s)
Humans , Epilepsy/genetics , Mutation , Polymorphism, Single Nucleotide/genetics , Glycogen/metabolism , Ion Channels/genetics
6.
J. epilepsy clin. neurophysiol ; 13(3): 119-123, Sept. 2007.
Article in Portuguese | LILACS | ID: lil-471128

ABSTRACT

INTRODUÇÃO: Relatos sobre a possibilidade de neurogênese no cérebro de mamíferos adultos existem desde o início do século XX. A dificuldade na verificação de tal evento, somada à firme convicção da maioria dos pesquisadores da época sobre a impossibilidade do nascimento de neurônios no sistema nervoso adulto, resultou em expressiva demora no avanço do conhecimento nesta área. O desenvolvimento de técnicas refinadas de estudo celular e a observação comprovada de neurogênese no cérebro de vertebrados adultos como o de pássaros canoros e roedores, serviu como importante alavanca para a desmistificação da impossibilidade de nascimento de neurônios no cérebro adulto. RESULTADOS: A descoberta da neurogênese em áreas específicas do cérebro adulto tem fomentado avanços em diversas áreas da pesquisa médica. No contexto de alterações neurológicas temos a constatação de neurogênese reativa no hipocampo de modelos animais de epilepsia do lobo temporal, logo após um episódio de estado de mal epiléptico. Diferenças filogenéticas entre roedores e humanos provavelmente existem, visto que há evidências de diminuição da neurogênese em crianças com epilepsia grave. A neurogênese pode estar também alterada frente ao uso de drogas, como parece ocorrer no tratamento com antidepressivos. CONCLUSÃO: O entendimento cada vez maior da neurogênese no cérebro adulto pode significar uma revolução no conceito da plasticidade do cérebro de um mamífero adulto, além de ter grande importância para o desenvolvimento de estratégias terapêuticas no tratamento de doenças neurodegenerativas e na possibilidade de promover a recuperação funcional de áreas lesadas do sistema nervoso central.


INTRODUCTION: Since the early XX century, there have been numerous reports considering the possibility of neurogenesis in the adult mammalian brain. However, it took 30 years before the widespread skepticism and the technical limitations were overcome. Refined cell technique developments and clear-cut evidences of neurogenesis in avian and rodent brains boosted additional research and counteracted the "no-new-neuron-in-the-adult-brain" myth. Now, the debate has focused on its importance to existing neural circuits, which promises interesting perspectives in medical research. RESULTS: Reactive neurogenesis in the hippocampus occurs in different experimental models of temporal lobe epilepsy, among them those that present spontaneous limbic seizures after an episode of status epilepticus. Phylogenetic differences between rodents and humans probably exist, since it has been described a reduction of neurogenesis in children with severe epilepsy. Neurogenesis may also be altered in many other conditions including chronic antidepressant drug treatment. CONCLUSION: Therefore, understanding the mechanisms and functional implications of adult neurogenesis in different brain regions can shed light into how such neuronal plasticity can help in the treatment of neurological disorders. In particular, cell therapy is a promising approach in the biomedical field that will possibly have great impact in the treatment of neurodegenerative diseases, as well as in the functional recovery of brain injuries.


Subject(s)
Humans , Animals , Epilepsy , Neurogenesis , Neuronal Plasticity , Neurodegenerative Diseases , Models, Animal , Cerebrum/injuries
7.
J. epilepsy clin. neurophysiol ; 13(1): 21-27, Mar. 2007. tab
Article in Portuguese | LILACS | ID: lil-457661

ABSTRACT

INTRODUÇÃO: Estímulos potencialmente deletérios às células podem, quando aplicados próximos ao limiar de lesão irreversível, ativar mecanismos protetores endógenos, diminuindo potencialmente o impacto de um estímulo subseqüente, mais intenso, sendo este fenômeno conhecido como tolerância ou pré-condicionamento. No sistema nervoso central (SNC), vários estímulos de pré-condicionamento foram identificados. OBJETIVOS: A presente revisão pretende descrever e discutir estudos envolvendo a neuroproteção na condição epiléptica utilizando diferentes insultos pré-condicionantes, assim como suas possíveis implicações clínicas. RESULTADOS E CONCLUSÃO: Vários estudos sugerem que o pré-condicionamento isquêmico, hipóxico, hipertérmico e através de crises convulsivas de intensidade moderada são capazes de ativar mecanismos endógenos, diminuindo potencialmente o impacto de crises epilépticas severas subseqüentes. A neuroproteção pôde ser observada tanto comportamentalmente, quanto através de análises morfológicas. Embora a maioria dos mecanismos ainda sejam desconhecidos, eles podem envolver a ativação de cascatas de sinalização intracelular específicas e a indução de expressão gênica. Portanto, os resultados de tais descobertas podem contribuir para o melhor entendimento das crises epilépticas e introduzir novas perspectivas sobre possíveis tratamentos da epilepsia.


INTRODUCTION: Different stimuli can potentially protect cells from damage if applied prior to a strong and harmful insult. This phenomenon is called tolerance- or priming-induced cellular protection. In the central nervous system (SNC), several forms of priming stimuli were identified and showed a significant effect reducing neuronal death in the brain. OBJECTIVE: The present review discusses different studies involving neuroprotection and epilepsy, as well as their clinical implications. RESULTS AND CONCLUSIONS: A number of studies reported that hypoxic, ischemic, hyperthermic and convulsive priming events activate endogenous mechanisms capable of reducing both the behavioral and cellular damaging effects of subsequent seizures. Such mechanisms seem to involve the activation of specific signaling cascades and gene expression changes. These findings, therefore, can contribute to a better understanding of the preconditioning events on epileptic seizures as well as introduce new perspectives to the treatment of epilepsy.


Subject(s)
Humans , Status Epilepticus , Ischemic Preconditioning , Epilepsy/pathology , Neuroprotection , Hypoxia , Nerve Degeneration
SELECTION OF CITATIONS
SEARCH DETAIL